skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yupeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 12, 2026
  2. Motivated by the extraordinary strength of nacre, which exceeds the strength of its fragile constituents by an order of magnitude, the fishnet statistics became in 2017 the only analytically solvable probabilistic model of structural strength other than the weakest-link and fiberbundle models. These two models lead, respectively, to the Weibull and Gaussian (or normal) distributions at the large-size limit, which are hardly distinguishable in the central range of failure probability. But they differ enormously at the failure probability level of 10−6 , considered as the maximum tolerable for engineering structures. Under the assumption that no more than three fishnet links fail prior to the peak load, the preceding studies led to exact solutions intermediate between Weibull and Gaussian distributions. Here massive Monte Carlo simulations are used to show that these exact solutions do not apply for fishnets with more than about 500 links. The simulations show that, as the number of links becomes larger, the likelihood of having more than three failed links up to the peak load is no longer negligible and becomes large for fishnets with many thousands of links. A differential equation is derived for the probability distribution of not-too-large fishnets, characterized by the size effect, the mean and the coefficient of variation. Although the large-size asymptotic distribution is beyond the reach of the Monte Carlo simulations, it can by illuminated by approximating the large-scale fishnet as a continuum with a crack or a circular hole. For the former, instability is proven via complex variables, and for the latter via a known elasticity solution for a hole in a continuum under antiplane shear. The fact that rows or enclaves of link failures acting as cracks or holes can form in the largescale continuum at many random locations necessarily leads to the Weibull distribution of the large fishnet, given that these cracks or holes become unstable as soon they reach a certain critical size. The Weibull modulus of this continuum is estimated to be more than triple that of the central range of small fishnets. The new model is expected to allow spin-offs for printed materials with octet architecture maximizing the strength–weight ratio. 
    more » « less
  3. Abstract The crack band model, which was shown to provide a superior computational representation of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three limitations: (1) The material damage is forced to be uniform across a one-element wide band because of unrestricted strain localization instability; (2) the width of the fracture process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular mesh lines are represented by a rough zig-zag damage band. Presented is a generalization that overcomes all three, by enforcing a variable multi-element width of the crack band front controlled by a material characteristic length l0. This is achieved by introducing a homogenized localization energy density that increases, after a certain threshold, as a function of an invariant of the third-order tensor of second gradient of the displacement vector, called the sprain tensorη, representing (in isotropic materials) the magnitude of its Laplacian (not expressible as a strain-gradient tensor). The continuum free energy density must be augmented by additional sprain energy Φ(l0η), which affects only the postpeak softening damage. In finite element discretization, the localization resistance is effected by applying triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of Φ(l0η). The force triplets enforce a variable multi-element crack band width. The damage distribution across the fracture process zone is non-uniform but smoothed. The standard boundary conditions of the finite element method apply. Numerical simulations document that the crack band propagates through regular rectangular meshes with virtually no directional bias. 
    more » « less